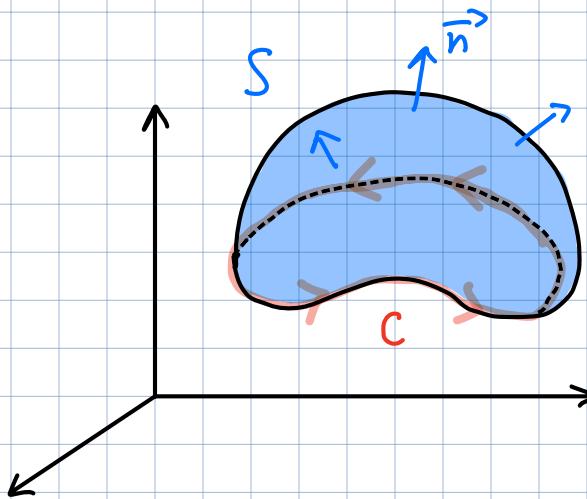


LAST TIME:

Stoke's theorem



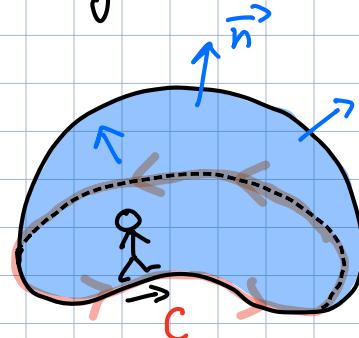
Stoke's THM:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \text{curl } \vec{F} \cdot \vec{n} dS$$

S -oriented surface (choice of \vec{n}), bounded by a closed curve C .

C has an "induced orientation":

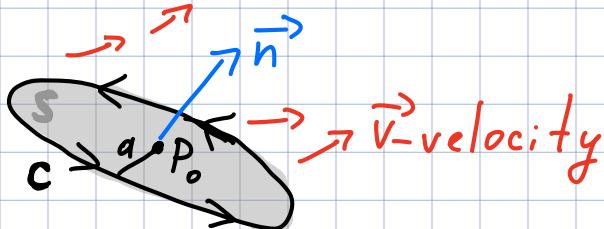
- walking along C with your head in the direction of \vec{n} , you should see S on your left.



- line integral of (tangential component) of \vec{F} along the boundary equals the flux of curl through the surface.

Notation: $C = \partial S$

- Interpretation of $\operatorname{curl} \vec{v}$ ↑ velocity field of a fluid



tiny disc about P_0 of radius a .

$$\iint_S \operatorname{curl} \vec{v} \cdot \vec{n} \, dS \stackrel{\text{Stoke's thm}}{=} \oint_C \vec{v} \cdot d\vec{r}$$

\approx

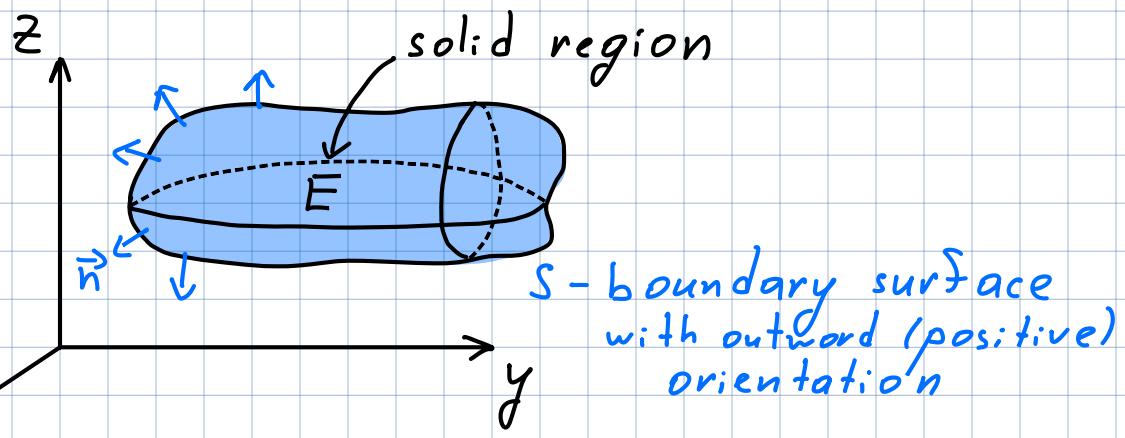
$$\pi a^2 \operatorname{curl} \vec{v}(P_0) \cdot \vec{n}$$

"circulation" of \vec{v} around C
- tendency of fluid to move around C

$$\Rightarrow \operatorname{curl} \vec{v}(P_0) \cdot \vec{n} = \lim_{a \rightarrow 0} \frac{1}{\pi a^2} \oint_C \vec{v} \cdot d\vec{r}$$

The curl of a vector field measures the tendency of that field to rotate around a given point.

Divergence theorem



Divergence thm:

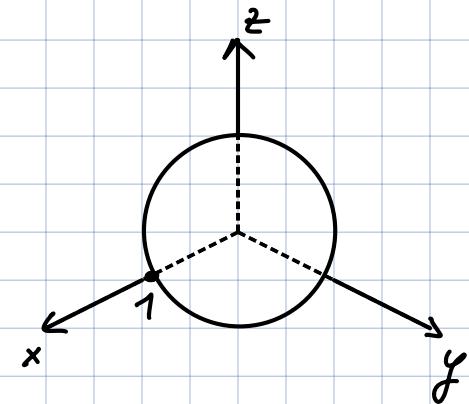
$$\iint_S \vec{F} \cdot d\vec{S} = \iiint_E \operatorname{div} \vec{F} dV$$

$\underbrace{\iint_S \vec{F} \cdot d\vec{S}}$ flux of \vec{F} through S

Ex: S-unit sphere: $x^2 + y^2 + z^2 = 1$, $\vec{F}(x, y, z) = \langle z, y, x \rangle$.

Find the flux $\iint_S \vec{F} \cdot d\vec{S}$.

Sol: $\operatorname{div} \vec{F} = \frac{\partial z}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial x}{\partial z} = 0 + 1 + 0 = 1$



$$\Rightarrow \iint_S \vec{F} \cdot d\vec{S} \stackrel{\substack{\text{Divergence} \\ \text{thm}}}{=} \iiint_B \operatorname{div} \vec{F} dV$$

unit ball: $x^2 + y^2 + z^2 \leq 1$

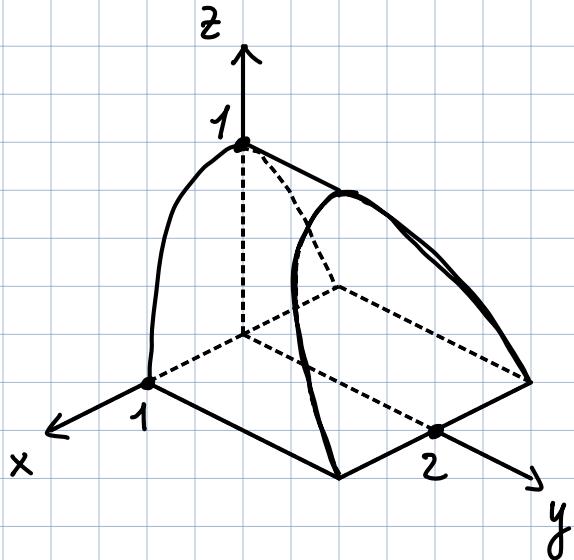
$$= \iiint_B 1 dV = \text{Volume of } B$$

$$= \frac{4}{3} \pi \cdot 1^3 = \frac{4\pi}{3}$$

Ex: S-boundary surface of E bounded by: $z = 1 - x^2$ - parabolic cylinder
and $z = 0, y = 0, y + z = 2$ - planes

$$\vec{F} = \langle xy, y^2 + e^{xz^2}, \sin(xy) \rangle.$$

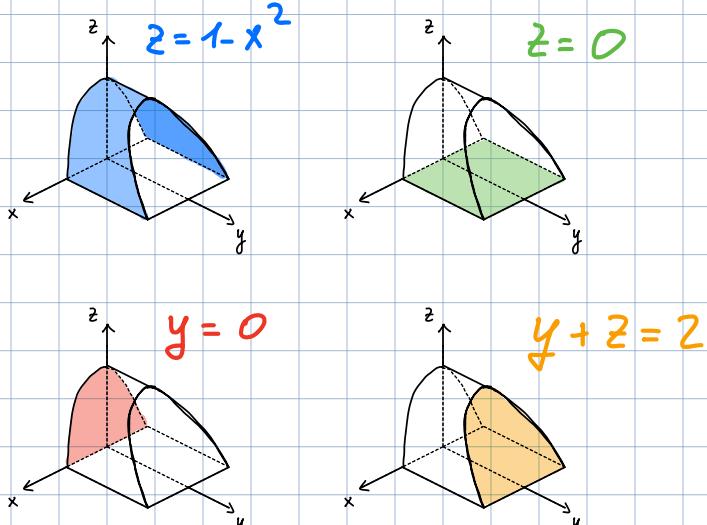
Find $\iint_S \vec{F} \cdot d\vec{S}$.



Sol: 1) $\operatorname{div} \vec{F} = \frac{\partial}{\partial x}(xy) + \frac{\partial}{\partial y}(y^2 + e^{xz^2}) + \frac{\partial}{\partial z} \sin(xy) = y + 2y$

2) E-type 3 solid region: $\begin{cases} -1 \leq x \leq 1 \\ 0 \leq z \leq 1 - x^2 \\ 0 \leq y \leq 2 - z \end{cases}$

3) $\iint_S \vec{F} \cdot d\vec{S} = \iiint_E 3y \, dV$
 $= \int_{-1}^1 \int_0^{1-x^2} \int_0^{2-z} 3y \, dy \, dz \, dx$
 $\quad \quad \quad \underbrace{\frac{3}{2}y^2}_{y=0} \Big|_{y=2-z}$



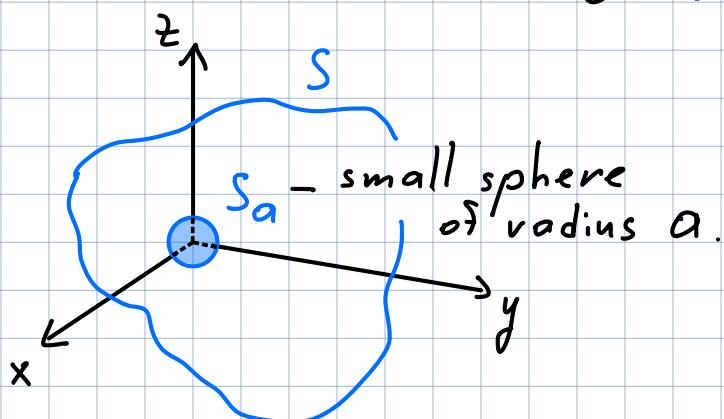
$$= \int_{-1}^1 \int_0^{1-x^2} \frac{3}{2} (2-z)^2 \, dz \, dx = -\frac{1}{2} \int_{-1}^1 (x^6 + 3x^4 + 3x^2 - 7) \, dx$$

$$\quad \quad \quad \underbrace{-\frac{1}{2} (2-z)^3}_{z=0} \Big|_{z=1-x^2} = -\frac{1}{2} ((1+x^2)^3 - 8) = \frac{184}{35}$$

Ex: $\vec{E}(\vec{r}) = \frac{\epsilon Q}{1\vec{r}^3} \vec{r}$ - electric field with a charge Q at the origin.

$$\vec{r} = \langle x, y, z \rangle$$

Show that the flux through any surface S enclosing the origin is $\iint_S \vec{E} \cdot d\vec{S} = 4\pi\epsilon Q$.



Sol: $\iint_S \vec{E} \cdot d\vec{S} = \iint_{S_a} \vec{E} \cdot d\vec{S} + \iiint_V \operatorname{div} \vec{E} dV$

$\frac{\epsilon Q}{a^3} \underbrace{a \cdot 4\pi a^2}_{\vec{r} \cdot \vec{n}} = 4\pi\epsilon Q$

$$\operatorname{div} \vec{E} = \epsilon Q \operatorname{div} \left\langle \frac{x}{(x^2+y^2+z^2)^{3/2}}, \frac{y}{(x^2+y^2+z^2)^{3/2}}, \frac{z}{(x^2+y^2+z^2)^{3/2}} \right\rangle$$

$$\begin{aligned} \frac{\partial}{\partial x} \left(\frac{x}{(x^2+y^2+z^2)^{3/2}} \right) &= \left(x^2+y^2+z^2 \right)^{-3/2} - \frac{3}{2} 2x^2 \left(x^2+y^2+z^2 \right)^{-5/2} \\ \frac{\partial}{\partial y} \left(\frac{y}{(x^2+y^2+z^2)^{3/2}} \right) &= \left(x^2+y^2+z^2 \right)^{-3/2} - \frac{3}{2} 2y^2 \left(x^2+y^2+z^2 \right)^{-5/2} \\ \frac{\partial}{\partial z} \left(\frac{z}{(x^2+y^2+z^2)^{3/2}} \right) &= \left(x^2+y^2+z^2 \right)^{-3/2} - \frac{3}{2} 2z^2 \left(x^2+y^2+z^2 \right)^{-5/2} \end{aligned} \quad \Rightarrow$$

$$\operatorname{div} \vec{E} = \epsilon Q \left(3 \left(x^2+y^2+z^2 \right)^{-3/2} - 3 \left(x^2+y^2+z^2 \right) \left(x^2+y^2+z^2 \right)^{-5/2} \right) = 0$$

Summary of Stoke's-like theorems:

1. Fund. thm for line integrals:

$$\int_C \nabla f \cdot d\vec{r} = f(B) - f(A)$$

2. Stokes thm:

$$\iint_S \text{curl } \vec{F} \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{r}$$

↑ boundary curve

3. Divergence thm:

$$\iiint_E \text{div } \vec{F} dV = \iint_{\partial E} \vec{F} \cdot d\vec{S}$$

↑ boundary surface

